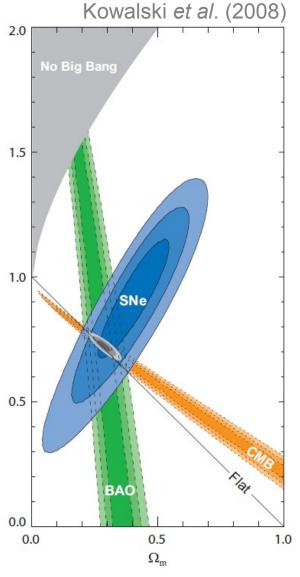

Dark Matter Theory and Fermi

Pearl Sandick
the University of Texas at Austin

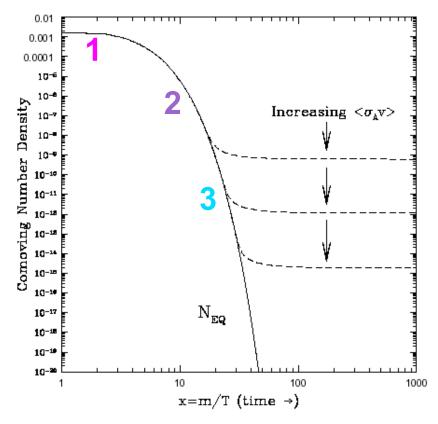

Dark Matter

- $\Omega_{\rm DM} = 0.233 \pm 0.0013$ Komatsu *et al.* (2009)
- It's non-baryonic (BBN+CMB, structure formation).
- It's stable or very long-lived.
- It's not charged (heavy isotope abundances).
- It's largely non-relativistic (cold).

What could it be?

- Standard Model particles?
 - ✓ No cold DM in the SM!(Neutrinos are HOT DM)
 - Beyond the SM:
 - axions, sterile neutrinos, SUSY particles (LSP = neutralino, gravitino, axino, or sneutrino), Kaluza Klein states (LKP), Little Higgs heavy photons (LTP) or scalars, mirror matter, VIMPzillas, solitons (Q-balls)...

Weak Scale in Cosmology


1. New (heavy) particle χ in thermal equilibrium:

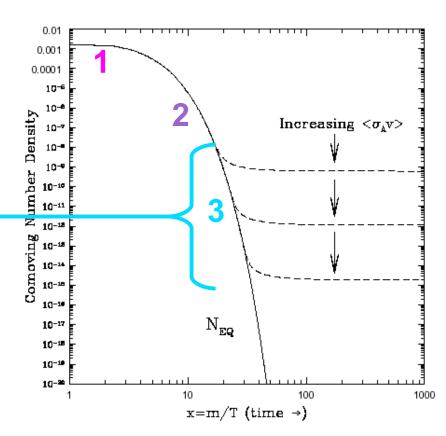
$$\chi \chi \rightleftharpoons f\bar{f}$$

2. Universe expands and cools:

$$\chi \chi \rightleftharpoons f\bar{f}$$

3. χ 's "freeze out" $\chi \chi \thickapprox f \bar{f}$

Jungman, Kamionkowski and Griest, PR 1996


Weak Scale in Cosmology

Expansion and annihilation compete to determine the number density:

$$\frac{dn_{\chi}}{dt} = -3Hn_{\chi} - \langle \sigma v_{rel} \rangle \left[n_{\chi}^2 - (n_{\chi}^{eq})^2 \right]$$

Stable matter with GeV-TeV mass and weak-scale interaction strength yield

 $\Omega h^2 \sim 0.1$

Jungman, Kamionkowski and Griest, PR 1996

What could it be?

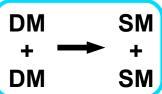
- Standard
 - ✓ No cold (Neutrine)

Theories that address the shortcomings of the Standard Model involve new physics at the weak scale, and therefore address the dark matter puzzle, as well.

- Beyond
 - axions, sterile neutrinos, SUSY particles (LSP = neutralino, gravitino, axino, or sneutrino), Kaluza Klein states (LKP), Little Higgs heavy photons (LTP) or scalars, mirror matter, WIMPzillas, solitons (Q-balls)...

Additional Ingredient

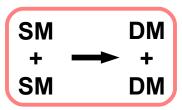
- It's not enough to have a theory with extra particles at the weak scale; also need a symmetry to make the lightest new particle stable.
- No problem! We need this anyway (proton stability, neutron-antineutron oscillations, large neutrino masses...)


Theory	Z ₂ Parity	Dark Matter
SUSY	R-parity	LSP
UED	KK-parity	LKP
Little Higgs	T-parity	LTP

Dark Matter Detection

Indirect Detection

→ Observe products of WIMP annihilation (decay) in terrestrial or space-based detectors


Direct Detection

→ Observe WIMPs through interactions with matter in terrestrial detectors

Colliders

→ Produce WIMPs directly: missing energy signature

→ Observe decays of Next-to-Lightest Particles to DM

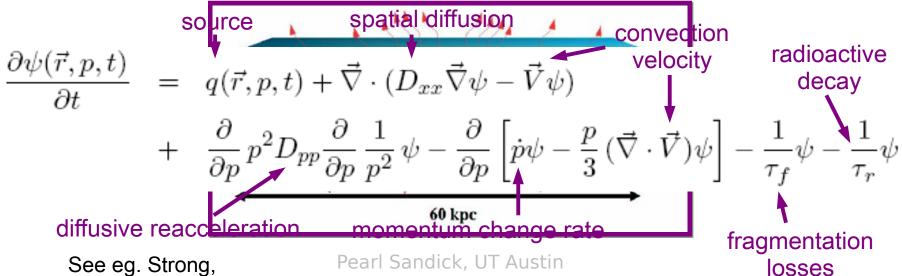
Indirect Detection

- WIMP annihilation.. (decay???)
- Need lot of dark matter:
 - Near the Milky Way GC Gondolo and Silk, 2000
 - In the Milky Way halo Ellis, Freese et al. 1987
 - In the Sun or the Earth
 Silk et al. 1985, Krauss et al. 1986, Freese 1986
 - In nearby dwarf galaxies
 Evans, Ferrer, and Sarkar, PRD 69, 2004,
 Sandick et al. 2009
 - In Milky Way substructure
 Evans, Ferrer, and Sarkar, PRD 69, 2004.

Evans, Ferrer, and Sarkar, PRD 69, 2004, Sandick et al. 2010, Sandick & Watson 2011

Indirect Detection

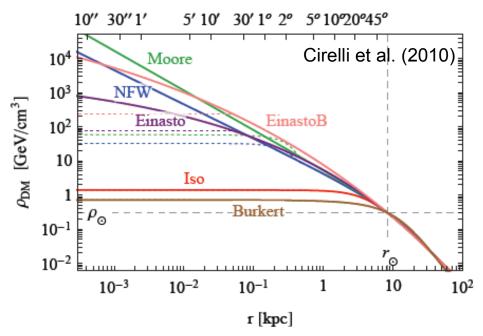
- WIMP annihilation.. (decay???)
- Need lot of dark matter:
 - Near the Milky Way GC Gondolo and Silk, 2000
 - In the Milky Way halo Ellis, Freese et al. 1987
 - In the Sun or the Earth
 Silk et al. 1985, Krauss et al. 1986, Freese 1986
 - In nearby dwarf galaxies
 Evans, Ferrer, and Sarkar, PRD 69, 2004,
 Sandick et al. 2009
 - In Milky Way substructure
 Evans, Ferrer, and Sarkar, PRD 69, 2004,
 Sandick et al. 2010, Sandick & Watson 2011


- neutrinos
 - → SuperK, IceCube
- high energy photons
 - → EGRET, **Fermi**, VERITAS, MAGIC...
- synchrotron radiation
 - → WMAP, Planck
- positrons/antiprotons
 - → HEAT, ATIC, PAMELA, Fermi, AMS

Neutral vs. Charged Products

Neutral: Propagate directly from source

$$\frac{d\Phi_f}{dE} = \frac{B_f \Gamma}{m_\chi} \frac{dN_f}{dE} \int_0^{\theta_{max}} d\theta \, 2\pi \sin\theta \int_0^{s_{max}} ds \, \rho_{DM}(r)$$


Charged: Path and energy altered along the way

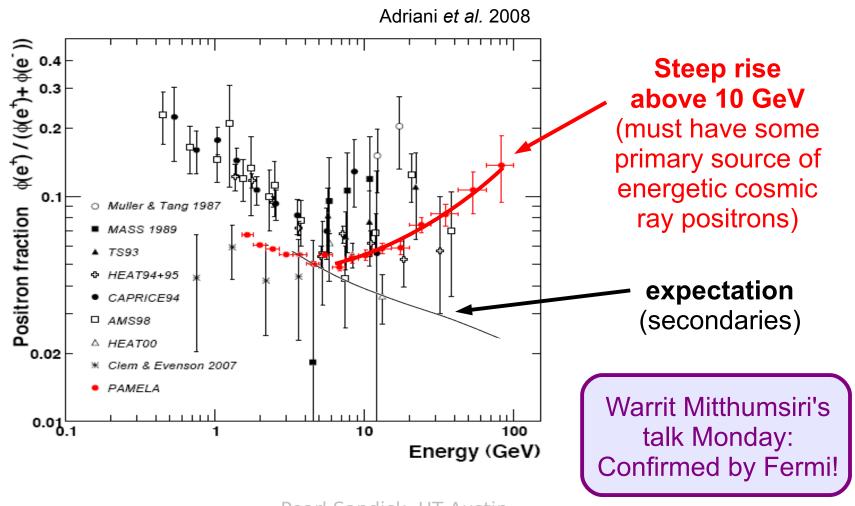
See eg. Strong, Moskalenko & Ptuskin (2007)

Dark Matter Distribution

Angle from the GC [degrees]

- NFW: $\rho(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$
- Einasto: $\rho(r) = \rho_s e^{\frac{-2}{\alpha}[(r/r_s)^{\alpha}-1]}$

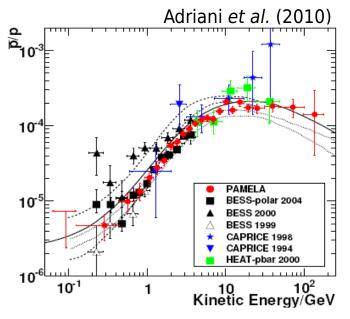
• Isothermal:
$$ho(r) = \frac{
ho_s}{1 + (r/r_s)^2}$$
Pearl Sandick, UT Austin


Simulations:

Diemand et al. 2008

PAMELA positron fraction

Elena Vannuccini's talk on Tuesday


Pearl Sandick, UT Austin

Cosmic Ray Anomalies

- Could be astrophysical in origin (pulsars, reacceleration of positrons in/around SN remnants)
- Could be annihilating or decaying dark matter
 - Challenges:
 - → Very hard spectrum
 - → No substantial excess in antiprotons or gamma rays
 - → High annihilation rate

Cosmic Ray Anomalies

- Could be astrophysical in origin (pulsars, reacceleration of positrons in/around SN remnants)
- Could be annihilating or decaying dark matter
 - Challenges:
 - → Very hard spectrum
 - → No substantial excess in antiprotons or gamma rays
 - → High annihilation rate

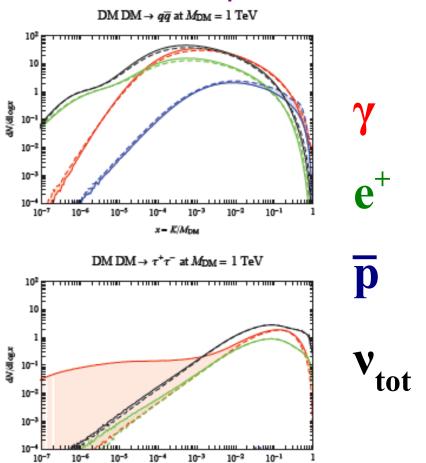
Cosmic Ray Anomalies

- Could be astrophysical in origin (pulsars, reacceleration of positrons in/around SN remnants)
- Could be annihilating or decaying dark matter
 - Challenges:
 - → Very hard spectrum
 - → No substantial excess in antiprotons or gamma rays
- "leptophilic" annihilations $\chi\chi \to e^+e^-, \, \mu^+\mu^-, \, \tau^+\tau^-$
- → High annihilation rate "boosted" annihilation cross section

Boosted Annihilation Rate

• Thermal WIMP: $\langle \sigma v \rangle_{th} = 3 \times 10^{-26} \text{cm}^3/\text{s}$

$$\Gamma = \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \int_{r_{min}}^{r_{max}} dr 4\pi r^2 \, \rho_{DM}^2(r)$$


- Boosted Rate from Particle Physics:
 - Sommerfeld or Breit-Wigner Enhancement, or non-thermal production mechanism $\langle \sigma v \rangle \gg \langle \sigma v \rangle_{th}$
 - Significant annihilation at high redshift → reionization (constrained by CMB) Galli et al. (2009)
- Boosted Rate from Astrophysics:
 - Dark Matter Substructure $\int
 ho_{DM}^2 r^2 dr > \int (
 ho_{DM}^{smooth})^2 r^2 dr$
 - For most dark matter models, this is not enough to explain the PAMELA excess.

Positrons from Dark Matter

- IF positron excess is due to dark matter, it is not your standard WIMP.
 - → Dark matter scenarios that explain the positron excess have serious consequences for other indirect searches.
- If it's NOT dark matter, WIMP hypothesis lives another day...

Photons

Continuum Spectrum:

• Monochromatic Line:

Elliott Bloom's talk yesterday

•
$$\chi \chi \to \gamma \gamma$$

$$E_{\gamma} = m_{\chi}$$
• $\chi \chi \to \gamma Y$

$$E_{\gamma} = m_{\chi} - \frac{m_{Y}}{4m_{\chi}}$$

 $Y=Z, h^0, \text{ etc.}$

Predicted $\gamma\gamma$ branching fractions typically small: 10^{-4} to 10^{-1}

Cirelli et al. (2010)

 $x = K/M_{DM}$

Pearl Sandick, UT Austin

Continuum Spectrum

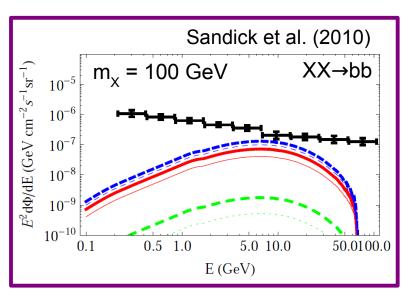
- Galactic Center
- Galactic Diffuse
- Extragalactic
- Dark Matter Subhalos
- Dwarf Galaxies and Galaxy Clusters

Galactic Center

It's Complicated.

The Galactic Center radiates brilliant insight to anyone connected with it. This infrared information reveals how to let go of what is in the way to make a clear path for the next step. astrodynamics.net

Galactic Center


It's Complicated.

Troy Porter's update on Monday: It is, indeed, complicated.

- Dark matter density expected to be quite large, but...
- Many sources near/along our line of sight to the GC
 → Source Confusion!
- Diffuse emission??? Good handle on astrophysical background emission is crucial to extracting a DM signal.

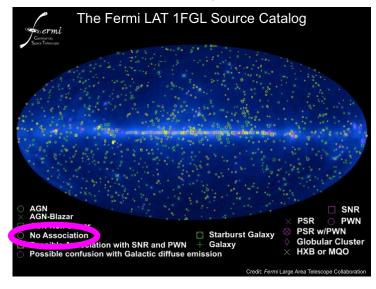
Galactic Diffuse Flux

- There's a log of dark matter out there, but...
- Diffuse background is complicated (again with the diffuse emission modeling problem)
 - Major components: π⁰ decay, e⁺/e⁻ IC with ISRF, e⁺/e⁻ bremsstrahlung with IS gas, point sources
 - Understanding backgrounds reduces wiggle room for dark matter model-building!
- Substructure changes the expected gamma-ray flux from annihilations or decays

Extragalactic (Cosmological) Dark Matter

 Structures: much larger signal than naïve expectation from average DM abundance in the Universe

$$\frac{d\phi_{\gamma}}{dE_{\gamma,0}} \; = \; \frac{\langle \sigma v \rangle}{8\pi} \frac{c}{H_0} \underbrace{\bar{\rho}_X^2}_{m_X^2} \int dz (1+z) \underbrace{\Delta^2(z)}_{h(z)} \times \frac{dN_{\gamma}}{dE_{\gamma}} (E_{\gamma}(1+z)) e^{-\tau(z,E_{\gamma})}$$


- Astrophysical uncertainties and complicated backgrounds:
 - Extragalactic BG from unresolved gamma-ray sources (eg. Blazars)
 - Residual contamination from Galaxy (including Galactic DM signal)
 - Look to high galactic latitudes → Is signal extragalactic or from DM substructure in the halo?

Subhalos, Dwarfs, and Clusters, oh MY!

DM objects with unknown locations?

Point Sources: Buckley & Hooper (2010), Sandick et al. (2010) Extended Sources: Talk by Joshua Lande

DM-dominated objects with known locations:

Galaxy Clusters Dwarf Spheroidal Galaxies Near (10's to 100's kpc) & localized Farther (>Mpc), but more massive No star-forming regions May contain AGN (gamma Little-to-no gas or dust No significant excess! sources) More from → Few sources -Stephan Zimmer Maja Llena Garde X-rav Stella hydro morium (lots of distri , but central region dark matter), but distribution (cusp) and substructure uncertain uncertain

Summary & Outlook

- Dark Matter is unambiguous evidence that the Standard Model of particle physics is not complete!
- There are many ways in which Fermi measurements can probe the properties of particle dark matter and theories of physics beyond the Standard Model (ex. Berenji & Bloom: constraints on KK models with Large Extra Dimensions – better than LHC in some cases!)
 - Apologies to those whose work wasn't mentioned
- There is great hope that dark matter will reveal itself in gamma-rays, and we must be ready – increasing wealth of analysis techniques and new ideas.
- Indirect detection + direct detection + LHC = good forecast for uncovering the nature of dark matter and what lies beyond the Standard Model of particle physics.